
ar
X

iv
:a

st
ro

-p
h/

99
01

05
2 

v2
   

15
 J

an
 1

99
9

Constraining dark energy with SNe Ia and large-scale structure

Saul Perlmutter1, Michael S. Turner2,3 and Martin White4

1Institute for Nuclear and Particle Astrophysics, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Departments of Astronomy & Astrophysics and of Physics, Enrico Fermi Institute, The University of Chicago, Chicago,

IL 60637-1433
3NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500

4Departments of Astronomy and of Physics,
University of Illinois at Urbana-Champaign, Urbana, IL 61801

(December 15, 2005)

Measurements of the distances to SNe Ia have produced strong evidence that the expansion of the
Universe is accelerating, implying the existence of a nearly uniform component of dark energy with
negative pressure. We show that constraints to this mysterious component based upon large-scale
structure nicely complement the SN Ia data, and that together they require ΩX ∈ (0.6, 0.7) and
wX < −0.6 (95% cl), for the favored flat Universe. Other cosmological data support this conclusion.
The simplest explanation, a cosmological constant, is consistent with this, while some of the other
possibilities are not.

I. INTRODUCTION

Two groups [1,2] have presented strong evidence that the expansion of the Universe is speeding up, rather than
slowing down. It comes in the form of distance measurements to some fifty supernovae of type Ia (SNe Ia), with
redshifts between 0 and 1. The results are fully consistent with the existence of a cosmological constant (vacuum
energy) whose contribution to the energy density is around 70% of the critical density (ΩΛ ∼ 0.7). Other measurements
indicate that matter alone contributes ΩM = 0.4 ± 0.1 [3]. Taken together, matter and vacuum energy account for
an amount close to the critical density, consistent with measurements of the anisotropy of the cosmic microwave
background (CMB) [4].

In spite of the apparent success of the cosmological constant explanation, other possibilities have been suggested
for the “dark energy.” This is in part because of the checkered history of the cosmological constant: It was advocated
by Einstein to construct a static universe and discarded after the discovery of the expansion; it was revived by Hoyle
and Bondi and Gold to solve an age crisis, later resolved by a smaller Hubble constant, and it was put forth to explain
the abundance of quasars at z ∼ 2, now known to be due to galactic evolution. Further, all attempts to compute the
value of the cosmological constant, which in modern terms corresponds to the energy associated with the quantum
vacuum, have been wildly unsuccessful [5]. Finally, the presence of a cosmological constant makes the present epoch
special: at earlier times matter (or radiation) dominated the energy density and at later times vacuum energy will
dominate (the “why now?” problem).

The key features of an alternative form for the dark energy are: bulk pressure that is significantly negative,
w < −1/3, where w ≡ p/ρ, and the inability to clump effectively. The first property is needed to ensure accelerated
expansion and to avoid interfering with a long matter-dominated era during which structure forms; the second
property is needed so that the dark energy escapes detection in gravitationally bound systems such as clusters of
galaxies. Candidates for the dark energy include [6]: a frustrated network of topological defects (such as strings or
walls), here w = −

n
3

(n is the dimension of the defect) [7] and an evolving scalar field, where ρ = 1

2
φ̇2 + V (φ) and

p = 1

2
φ̇2

− V (φ) (referred to by some as quintessence) [8,9].
The SN Ia data alone do not yet discriminate well against these different possibilities [1,10]. As shown in Fig. 1,

the maximum likelihood region in the ΩM–w plane runs roughly diagonally: less negative pressure is permitted if
the fraction of critical density contributed by dark energy is larger. Following earlier work [6], this led us to consider
other cosmological constraints: large-scale structure, anisotropy of the CMB, the age of the Universe, gravitational
lensing, and measurements of the Hubble constant and of the matter density. As we shall show, some of the additional
constraints, especially large-scale structure, complement the SN Ia constraint, and serve to sharpen the limits to ΩM

and w; others primarily illustrate the consistency of these measurements with the SN Ia result. In the end, we find
ΩX ∈ (0.6, 0.7) and w < −0.6 (95% cl).
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II. METHOD

Our underlying cosmological paradigm is a flat, cold dark matter model with a dark-energy component, though as
we will discuss later our results are more general. We restrict ourselves to flat models both because they are preferred
by the CMB anisotropy data and a flat Universe is strongly favored by inflation. We restrict ourselves to cold dark
matter models because of the success of the cold dark matter paradigm and the lack of a viable alternative. For our
space of models we construct marginalized likelihood functions based upon SNe Ia, large-scale structure, and other
cosmological measurements, as described below.

Our model parameter space includes the usual cosmological parameters (ΩM , ΩBh2, and h) and the amplitude
and spectral index of the spectrum of Gaussian curvature fluctuations (σ8 and n). For the dark-energy component,
we choose to focus on the dynamical scalar-field models, because the frustrated defect models are at best marginally
consistent with the SN Ia data alone [1,10].

In the dynamical scalar-field models the equation of state w ≡ p/ρ varies with time. However for most of our
purposes, only one additional free parameter needs to be specified, an “effective” equation of state. We choose ŵeff

to be that value w which, if the Universe had w constant, would reproduce the conformal age today. We choose
this definition because the CMB anisotropy spectrum and the COBE normalization of the matter power spectrum
remain constant (to within 5–10%) for different scalar field models with the same ŵeff [11]. For the models under
consideration ŵeff is closely approximated by [12]

weff ≡

∫
da Ωφ(a)w(a)/

∫
da Ωφ(a) . (1)

and, since it is simpler to compute, we have used weff throughout. Obviously, our results also apply to constant w
models (e.g., frustrated defects), by taking w = weff .

While weff neatly parameterizes the scalar-field models from the standpoint of large-scale structure and the CMB
anisotropy, it does not do as well when it comes to the SN Ia data. Recall that weff as defined in Eq. (1) receives
a contribution from a wide range of redshifts. The SN Ia data however are sensitive mostly to z ∼ 1/2. Since w
becomes less negative with time in the models we are considering, the SN Ia data “see” a less negative w than the
CMB by a model dependent amount. We shall return to this point later.

We normalize our models to the COBE 4-year data [13] using the method of Ref. [14]. Beyond the COBE measure-
ments, the small-scale anisotropy of the microwave background tells us that the Universe is close to being spatially
flat (position of the first acoustic peak) and that ΩM is less than one and/or the baryon density is high (height of
the first acoustic peak). We have not included a detailed fit to the current data (see e.g. Ref. [4]), but rather impose
flatness. The additional facts that might be gleaned from present CMB measurements, ΩM < 1 and high baryon
density, are in fact much more strongly imposed by the large-scale structure data and the Burles – Tytler deuterium
measurement.

We require that the power-spectrum shape fit the redshift-survey data as compiled by Ref. [15] (excluding the
4 smallest scale points which are most sensitive to the effects of bias and nonlinear effects). On smaller scales we
require that all of our models reproduce the observed abundance of rich clusters of galaxies. This is accomplished by
requiring σ8 = (0.55 ± 0.1)Ω−0.5

M , where σ8 is the rms mass fluctuation in spheres of 8 h−1 Mpc computed in linear
theory [16]. The baryon density is fixed at the central value indicated by the Burles–Tytler deuterium measurements,
ΩBh2 = 0.019±0.001 [17]. We assume that clusters are a fair sample of the matter in the Universe so that the cluster
baryon fraction fB = (0.07± 0.007)h−3/2 reflects the universal ratio of baryons to matter (ΩB/ΩM ). We marginalize
over the spectral index and Hubble constant, assuming Gaussian priors with n = 0.95±0.05, which encompasses most
inflationary models, and h = 0.65 ± 0.05, which is consistent with current measurements.

There are three other cosmological constraints that we did not impose: the age of the Universe, t0 = (14 ± 2)Gyr
[18]; direct measurements of the matter density, ΩM = 0.4 ± 0.1, and the frequency of multiply imaged quasars.
While important, these constraints serve to prove consistency, rather than to provide complementary information.
For example, the SN Ia data together with our Hubble constant constraint lead to an almost identical age constraint
[1,2]. The lensing constraint, recently studied in detail for dynamical scalar-field models [19], excludes the region of
large ΩX and very negative w (at 95% cl, below the line weff = −0.55 − 1.8ΩM ), which is disfavored by the SN Ia
data. The matter density determined by direct measurements, ΩM = 0.4 ± 0.1, is consistent with that imposed by
the LSS and Hubble constant constraints.
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III. RESULTS

FIG. 1. Contours of likelihood, from 0.5σ to 2σ, in the ΩM–weff plane. Left: The thin solid lines are the constraints from
LSS and the CMB. The heavy lines are the SN Ia constraints (using the Fit C supernovae of Ref. [1]) for constant w models
(solid curves) and for a scalar-field model with an exponential potential (broken curves; quadratic and quartic potentials have
very similar SN Ia constraints). Note that the SN Ia contours for dynamical scalar-field models and constant w models are
slightly offset (see text). Right: The likelihood contours from all of our cosmological constraints for constant w models (solid)
and dynamical scalar-field models (broken).

As can be seen in Fig. 1, our large-scale structure and CMB constraints neatly complement the SN Ia data. LSS
tightly constrains ΩM , but is less restrictive along the weff axis. This is easy to understand: in order to fit the power
spectrum data, a COBE-normalized CDM model must have “shape parameter” Γ = ΩMh ∼ 0.25 (with a slight
dependence on n). Together with the constraint h = 0.65 ± 0.05 (and our fB constraint) this leads to ΩM ∼ 0.35.
As discussed in Ref. [6], the σ8 constraint can discriminate against weff ; however, allowing the spectral index to differ
significantly from unity diminishes its power to do so.

Note that the SN Ia likelihood contours for the dynamical scalar-field model and the constant-w models are not

the same while the LSS contours are identical. With the Fit C supernovae of Ref. [1] and the dynamical scalar-field
models considered here (quadratic, quartic and exponential scalar potentials), the contours are displaced by about
0.1 in weff : the 95% cl upper limit to weff for the constant w models is −0.62, while for the quartic, quadratic and
exponential potentials for V (φ) it is −0.75, −0.76 and −0.73 respectively. The reason for this shift is simple: the w
dependence of LSS is almost completely contained in the distance to the last-scattering surface and weff is constructed
to hold that constant. On the other hand, the w dependence of the SN Ia results is more heavily weighted by the
recent value of w; said another way, there is a different effective w for the SN Ia data. This fact could ultimately prove

to be very important in discriminating between different models.

Additionally there are a class of dynamical scalar-field models that have attracted much interest recently [9,20].
For these potentials (here we consider V (φ) = c/φp and V (φ) = c[e1/φ

− 1]), and a wide range of initial conditions
the scalar-field settles into a “tracking solution” that depends only upon one parameter (here c) and the evolution of
the cosmic scale factor, suggesting that they might help to address the “why now?” problem.

For our purposes, the most interesting fact is that each tracker potential picks out a curve in ΩM − weff space.
Typically the lower values of ΩM go with the most negative values of weff and vice versa (see Fig. 2) This fact puts
the tracker solutions in jeopardy, as shown in the same figure. For the tracker models shown here (p = 2, 4 and
exponential), the 95% cl intervals for the SN Ia and LSS data barely overlap. The situation is even worse for larger
values of p. A similar problem was noted in Ref. [21].

Finally, we comment on the robustness of our results. While we have restricted ourselves to flat models, as preferred
by the CMB data, our constraints do not depend strongly on this assumption. This is because the LSS constraints
are insensitive to the flatness assumption, and curvature, which corresponds to a weff = −

1

3
component, is strongly

disfavored by the SN Ia results. We have not explicitly allowed for the possibility that inflation-produced gravity
waves account for a significant part of the CMB anisotropy on large-angular scales (i.e., T/S > 0.1), which would
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have the effect of decreasing the overall amplitude of the COBE normalized power spectrum. In fact, allowing for
gravity waves would not change our results, as this degree of freedom is implicitly accounted for by a combination of
n, the normalization freedom in the power spectrum and the uncertainty in the COBE normalization.

Our model space does not explore more radical possibilities, for example, that neutrinos contribute significantly to
the mass density or a nonpower-law or isocurvature spectrum of density perturbations [22]. Even allowing for these
possibilities (or others) would not change our results significantly if one still adopted the mass density constraint,
ΩM = 0.4 ± 0.1. As discussed earlier, it is almost as powerful as the CDM-based LSS constraint.

FIG. 2. Upper panel: The relationship between weff and ΩM for a selection of tracker potentials. Lower panels: the CMB
and LSS likelihoods from Fig. 1 as a function of ΩM (dotted) and the SN Ia likelihood (solid – normalized to unity at the
peak). As can be seen clearly, tracker models have difficulty simultaneously accommodating the SN Ia and LSS constraints.

IV. CONCLUSIONS

The evidence provided by SNe Ia that the Universe is accelerating rather than slowing solves one mystery – the
discrepancy between direct measurements of the matter density and measurements of the spatial curvature based
upon CMB anisotropy – and introduces another – the nature of the dark energy that together with matter accounts
for the critical density. SNe Ia alone do not yet strongly constrain the nature of the dark energy.

In this Letter we have shown that consideration of other important cosmological data both complement and reinforce
the SN Ia results. In particular, as illustrated in Fig. 1, consideration of large-scale structure leads to a constraint
that nicely complements the SN Ia constraint and strengthens the conclusions that one can draw. Other cosmological
constraints – age of the Universe, frequency of gravitational lensing and direct measures of the matter density –
provide information that is consistent with the SN Ia constraint (lensing and age) and the LSS constraint (matter
density), and thereby reinforces the self consistency of the whole picture of a flat Universe with cold dark matter and
dark energy.

Finally, what have we learned about the properties of the dark-energy component? The suite of cosmological
constraints that we have applied indicate that ΩX ∈ (0.6, 0.7) and weff < −0.6 (95% cl), with the most likely value of
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weff close to −1 (see Fig. 1). The frustrated network of light cosmic string (weff = −
1

3
) is strongly disfavored, and a

network of frustrated walls (weff = −
2

3
) is only slightly more acceptable. Also in the disfavored category are tracker

models with V (φ) = c/φp and p = 2, 4, 6, 8, · · ·. Dynamical scalar-field models can be made acceptable provided weff

is tuned to be more negative than −0.7. The current data definitely prefer the most economical, if not the most
perplexing, solution: Einstein’s cosmological constant.
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